Volkswagen vs. Porsche.
A Power-Index Analysis.

Roland Kirstein*
July 13, 2009

Abstract
If Porsche had completed the takeover of Volkswagen, the supervisory board of Porsche SE would have consisted of three groups: Porsche shareholders with 6 seats, the 324,000 Volkswagen employees and the 12,000 Porsche employees with 3 delegates each. This paper presents a power-index analysis of this supervisory board. It shows that, unless the Porsche employees are made completely powerless, the Porsche and VW employee representatives will have identical power regardless of the actual distribution of seats on the employees’ side. This analysis sustains the judgment issued by a German labor court which rejected the request of the Volkswagen works council for more seats than the Porsche employees. A more adequate representation would require the usage of a “randomized decision rule”.

JEL classification: C71, D72, K22, M21
Keywords: Banzhaf power-index, supervisory board, societas europeae, randomized decision rule.

*Economics of Business and Law, Faculty of Economics and Management, Otto-von-Guericke-University, Bldg. 22/D-003, PO Box 1402, 39016 Magdeburg, Germany. Email: rol@rolandkirstein.de. This paper is to be presented at the Voting Power in Practice Workshop at the University of Warwick, 14-16 July 2009, sponsored by The Leverhulme Trust (Grant F/07-004/AJ). I’m indebted to Matthew Braham, Maher Dwik, Manfred Holler, Christian Kirchner, Sidé Koné, Bernhard Nagel, Volker Rieble, and Eva Schliephlake for useful comments.
1 Introduction

The owners of the German car manufacturer “Dr. Ing. h.c. F. Porsche AG” created the “Porsche Automobil Holding SE” (henceforth: Porsche SE) in 2007. Porsche SE owns 100 percent of Porsche AG and has, of late 2008, taken over the majority of Volkswagen AG (VW). The complete takeover of the much bigger VW AG, however, has been canceled in May 2009 due to a heavy debt burden in Porsche’s balance sheet that the owner families apparently try to alleviate by selling a part of Porsche SE to investors from Qatar.

This paper analyzes the composition of the supervisory board (Aufsichtsrat) of Porsche SE as it was intended for the time after a successful takeover. The other basic corporate governance problem of the SE is the installation of a works council, see Keller and Werner (2008). This is, however, not in the focus of this paper. This paper also excludes from consideration the returns of shareholders in the target firm, as analyzed in Hein and Zahir (2008). The Porsche SE board consists of six representatives of the shareholders and the employees, respectively. After a takeover, both the current 324,000 VW employees and the 12,000 Porsche employees would have been represented by three supervisory board members each.

A societas europaeae (SE) has to negotiate the conditions of workers’ co-determination with the workers involved. These negotiations do not necessarily include the composition of the supervisory board, as this has to be determined in the “terms of foundation” set up by the owners. The number of firms that incorporated as an SE is still small, and the most prominent German example, the insurance company Allianz SE, also has chosen a two-tier model with 12 members in the supervisory board, 6 of them being employee representatives, see Gold and Schwimbersky (2008, 47). On the other hand, it is not prohibited to bargain over these statutes, or to bring a lawsuit, which is the way how the VW works council tried to modify the existing rule preemptively.

At the time the Porsche SE was founded, it did not dominate VW. Hence, the VW workers did not take part in negotiations. Bernd Osterloh, head of the VW works council, called the plan unacceptable and “a slap in the face”

1 See, e.g., Economist (2009).
2 See Meck (2009).
3 On the development of the European Company Statute, see Gold and Schwimbersky (2008); on the recent developments of corporate governance statutes, see Hill (2008).
4 The “minimum theory” of supervisory boards presented by Thomsen (2008) refers to a board’s responsibilities rather than its size.
5 See Amann (2008).
6 This also holds for the size of the supervisory board, see Keller and Werner (2008, 167).
for VW employees.7 The head of Porsche’s works council, Uwe Hück, rejected Osterloh’s request. He considered it an expression of equality that each of the two employee groups will be represented by the same number of delegates in the supervisory board.8

The VW works council has, thus, brought legal action against this plan, demanding an increased number of VW representatives. In April 2008, a German labor court rejected this claim because, at the time of the court decision, Porsche SE held only 31 percent of VW’s shares and, therefore, did not dominate VW.9 The VW works council considered an appeal against this decision, arguing that Porsche SE already effectively did control VW.10 Leech (2001) has shown that 30 percent shares would be enough to have almost full power if the other 70 percent are fully dispersed (among 70 shareholders with just 1 percent each).11 After the first success in court, Porsche apparently made two offers to the VW workers.12 First of all, the representatives of VW employees may receive a veto right in the supervisory board of the Porsche SE. Moreover, decisions regarding the erection and reallocation of production sites may require a 2/3 majority.

Even though the concrete VW vs. Porsche case seems to have been settled, it raises some abstract questions which deserve systematic answers: Is a larger group (of employees) entitled to a larger number of seats in the supervisory boards? Under which circumstances is the number of seats relevant for the influence of this group? This question is not only relevant for the composition of supervisory boards, but also for the composition of decision bodies in federal systems, such as the EU council. Should the larger member states have a greater number of votes, proportional to their population? The principle “one man, one vote”, a very basic idea of democracy, seems to imply a proportional representation at least at first glance. If, however, it is the aim of the institutional design to endow each individual member of a constituency with equal influence (or power), then this principle appears useless. To decide whether individuals enjoy equal or different power, a quantitative operationalization is required that can be achieved by the concept of power

7AsiaOne (2007). The works council of Porsche SE is, after the takeover, clearly dominated by VW employees; see Amann (2008), with Osterloh as the elected chairman.

8Manager Magazin (2007).

9Arbeitsgericht Stuttgart, AZ 12 BV 109/07. The court based his decision mainly on this fact and did not decide whether the existing agreement on co-determination had to be modified after a takeover.

10See GlobalInsight (2008).

11VW is, however, not a case of dispersed ownership, as the federal state Lower-Saxony controls 20 percent. Kirstein and Koné have analyzed to which extent Leech’s results are valid if an incumbent blockholder exists, and if investors face a voting cap.

12See WAZ (2008), citing the German news magazine Focus. However, according to the same source, the VW works council claimed to have not received such an offer.
indices. Following the insights of power index analysis, a blind request for “equal votes per capita” is not justified.

The next section gives an overview of the power index literature. Section 3 presents an abstract analysis of the 3-player voting game. The results are used in Section 4, which evaluates the numerical examples relevant for the VW case. Section 5 evaluates three relevant modifications of the basic analysis. Two of these modifications reflect proposals made by Porsche to the VW works council: Section 5.1 analyzes the power situation if a 2/3 majority is required. In 5.2., the impact of a veto right assigned to the VW workers’ representatives in the supervisory board of Porsche SE is analyzed. In 5.3, the idea of a tie-breaking vote for the shareholders’ side is taken into consideration as well.

While section 5 perceives the interaction between the members of the Porsche SE supervisory board as a 3-persons game, this assumption is relaxed in section 6. Here, the previously made assumption is discarded that the employers’ side consists of a homogeneous bloc. Now the shareholder side contains a maverick, i.e., an employer who votes independently from his peers. Section 6.3 combines the analysis of tie-breaking vote and maverick. Section 7 presents the idea of stochastic decision rule:13 If the number of votes required for a social decision (quota) is not fixed, but chosen from a set of quotas using a pre-determined probability distribution, it is possible to endow the VW employee representatives with 27 times the expected power of the Porsche employee representatives. Section 8 presents the conclusions.

2 Power index analysis in the literature

A non-trivial problem of the design of statutes for representative voting bodies is the question how to ensure equal influence (or power) per represented person. As the number of votes held by the member of a voting body is only occasionally a good proxy for the power or influence of this person,14 the problem cannot be solved by simply assigning votes to the delegates that are proportional to the size of the respective constituency. Penrose (1946) has argued that equal votes per capita would endow larger groups of voters with an over-proportional amount of voting power. In his model, the voting power of a group is proportional to the square of the number of votes it controls. If a body consists of several groups, two of which control the same number of votes, then their power index is identical. If one of these groups is endowed

with twice the number of votes, its power then is not just two times the power of the reference group, but four times.

The contributions of Banzhaf (1965 and 1968) also demonstrated that players’ power in a voting body is not necessarily proportional to their votes. A very simple example can highlight this point: If two shareholder both own 50 percent of their firm and decide with absolute majority, then both have equal power. With 51 vs. 49 percent, however, player 1 has total power (power index 1), while 2 is powerless (power index 0). Even though the ratio of the two players’ shares (or votes) is almost identical in the two scenarios, the ratio of the two players’ power indices differ dramatically. In Banzhaf’s canonical example, which proved helpful in a lawsuit, his power index analysis demonstrated the unfairness of proportional votes in the supervisory board of Nassau County (NY). In 1965, this board consisted of representatives from six districts. The two largest districts held 31 seats each, the next two held 28 and 21 seats respectively, and the smallest districts were endowed with two seats each. For a collective decision, an absolute majority was required, hence 58 votes.

Banzhaf argued that there exists no situation in which the votes of one of three smallest members would have any impact on the outcome. In other words, the whole power is equally distributed among the three largest members, rendering the three smaller ones powerless.\(^{15}\) As a result of Banzhaf’s legal action, the composition of the Nassau supervisory board was changed several times.\(^{16}\)

Drawing on the theory of voting power, this paper argues that the claim of the VW works council is unfounded. What really counts is not the number of seats or voting rights in a supervisory board, but the influence or power a group or player can exert. The analysis in this paper shows that the influence of VW representatives in the supervisory board of the Porsche SE cannot be adapted to the different number of employees they represent. The analysis perceives the situation in the future supervisory board of Porsche SE as a 3-player game: The first player consists of the representatives of the Porsche shareholders (with 50 percent of the votes), the second player consists of the Porsche, the third of the VW workers’ representatives (with the other 50 percent distributed among them). The analysis will demonstrate that Porsche and VW workers’ power is identical, regardless of the actual distribution of voting rights. Only in extreme cases, if Porsche representatives are made powerless, the VW workers’ representatives can be endowed with more power than their counterparts. Hence, it is not possible to adapt the

\(^{15}\)See Hodge and Klina (2005, 124f.).

\(^{16}\)In 1994, the votes were 30, 38, 22, 15, 7, 6. The largest district enjoys a normalized Banzhaf power of 0.25, while the smallest district holds 0.0192, see Hodge and Klina (2005, 141).
situation so as to endow both groups on the workers’ side with “equal power per represented capita.”

Several power indices exist. Penrose (1946) has measured voting power by the probability with which a member of a voting body “carries” the collective decision, i.e., his own choice is identical to the social choice. A member is more powerful, the higher this probability. The power indices of Banzhaf (1965) and Penrose (1946) come to identical results.\(^{17}\) Banzhaf’s index is based on the probability with which a member is “critical” in winning coalitions. A group of members is a winning coalition if the sum of the votes is greater than or equal to the threshold (“quota”) required for a collective decision.\(^{18}\) A member of a winning coalition is critical if his withdrawal from the coalition would turn it into a losing coalition (i.e., the remaining number of votes is smaller than the quota). The number of times a member is critical measures his power. Summing up all individual powers over all members yields the total power. The (normalized) Banzhaf power-index of a player is his individual power, divided by the total power.

Modifications of the Banzhaf power index have been proposed by Johnston (1978), Deegan and Packel (1978), and Holler and Packel (1983). The Johnson index gives credit to being “critical” that is inversely related to the size of the winning coalition. Deegan and Packel only count minimum winning coalitions, which in particular makes sense if the value of prevailing is a public good, but also limit their view to minimum winning coalitions. A different concept to measure voting power has been proposed by Shapley and Shubik (1954). Their index looks at all possible permutations of the committee members and evaluates which member is “pivotal” (i.e., turns the coalition into a prevailing one). An individual power index is the number of constellations in which a member is pivotal, divided by the total number with which all members are pivotal. All these index concepts refer to simple voting games. However, interactions between members of a committee can be more complex (e.g., if one member is allowed to set the agenda). The “strategic power index” of Steunenberg, Schmidtchen, and Koboldt (1999) can be applied to such sequential games. As the subsequent analysis relates to simple voting games only, and the prize can be considered a public good, the Banzhaf index appears to be adequate. The usage of the Shapley-Shubik-Index or the Packel-Holler-Index, however, would not lead to qualitatively different results in games with a small number of players.

\(^{17}\)Penrose’s index measures the probability of carrying the social decision minus 0.5; this is equal to the non-normalized Banzhaf index, see Felsenthal and Machover (2004, 5).

\(^{18}\)“Coalition” is used in an informal or spontaneous sense, it requires no contract between its members.
3 Banzhaf power in a 3-player voting game

Consider a voting body that consists of three players \(\{1; 2; 3\}\) who have to make a binary decision (i.e., “yes” or “no”). The players are endowed with voting rights \(R_i \in \mathbb{N}; i = 1..3\). The total sum of voting rights, denoted \(R = \sum_{i=1}^{3} R_i\), is not necessarily equal to three as the one or the other player may have more than one vote. For convenience we replace the notion of voting rights by voting weights \(W_i \in [0, 1]\) in this section. An individual \(W_i\) is computed as \(W_i = R_i/R\). Thus, \(\sum_{i=1}^{3} W_i = 1\).

For a proposal (“yes”) to become the collective decision, the number of votes cast in favor of it need to reach at least a threshold value, the quota \(Q\). A relative quota (i.e., the number of voting weights required for a social decision), is denoted \(q\), and is fixed ex-ante with \(1/2 \leq q < 1\). Subsequently, we look at four prominent decision rules:

- The absolute majority rule: Either \(q = (R + 2)/2R\) if \(R\) is even, or \(q = (R + 2)/2R\) if \(R\) is odd. In other words, a proposal becomes social decision if it is supported by more than 50 percent of the votes. For simplicity, I will denote this rule as \(q = 1/2\) in the subsequent sections, or use the absolute quota.

- 2/3-majority: \(q = 2/3R\). A proposal becomes social decision if it is supported by \(2/3\) or more of all votes.

- 3/4-majority: A proposal becomes social decision if it is supported by \(3/4\) or more of all votes.

- Unanimity: \(q = 1\), hence the support of all players’ votes is required.

If, under the relative quota \(q\), the members of a subset \(I \subseteq \{1; 2; 3\}\) vote for a proposal, and

\[\sum_{i \in I} W_i \geq Q,\]

then this proposal becomes the collective decision of the voting body, and the coalition \(I\) is called a “winning coalition.” The term “coalition” does not refer to a formal agreement between the members of \(I\); in this context, it only denotes that the players in \(I\) support the same proposition. The “grand coalition” of all players is always a winning coalition.

We assume, without loss of generality, that the three members of the body can be ordered with regard to their voting weights, i.e., \(1 \geq W_1 \geq W_2 \geq W_3 \geq 0\). The possible coalitions, winning or not, can be ordered with regard to their size in terms of voting rights held by their members. One ranking, which is directly implied by the assumption made above, is
1 ≥ W_1 + W_2 ≥ W_1 + W_3. The ranking assumption, however, implies nothing about the relative size of W_1 and W_2 + W_3: Either W_1 ≥ W_2 + W_3 or W_2 + W_3 ≥ W_1 is possible. Despite this, the assumption is sufficient to derive all the possible power profiles (β_1, β_2, β_3), where β_i denotes the Banzhaf power index of player i (the concept was verbally explained in the Introduction).

Proposition 1: Consider a voting game with three players i ∈ {1; 2; 3} holding voting weights W_i with 1 ≥ W_1 ≥ W_2 ≥ W_3 ≥ 0 and ∑_{i=1}^{3} = 1. A relative quota q with 1/2 ≤ q < 1 exists. In this game results in only one out of the following four Banzhaf power-index profiles (β_1, β_2, β_3): either (1, 0, 0), (0.6, 0.2, 0.2), (0.5, 0.5, 0), or (0.33, 0.33, 0.33).

Proof:
The prevailing power profile depends on the relative size of the quota q and the voting weights of the three players:

1. If q ≥ W_1 + W_2, then the only winning coalition is the grand coalition {1; 2; 3}. Each player is “critical” here, hence the resulting power index profile is (0.3, 0.33, 0.33).

2. If W_1 + W_2 ≥ q > W_1 + W_3, then we have two winning coalitions: {1; 2; 3} and {1; 2}. Player 3 is never critical, while 1 and 2 each are critical in both winning coalitions. Hence, the power index profile is (0.5, 0.5, 0).

3. If W_1 + W_3 ≥ q > max{W_1; W_2 + W_3} then three winning coalitions exist: {1; 2; 3}, {1; 2}, and {1; 3}. While player 1 is critical in all of them, player 2 is critical only in {1; 2}, and player 3 is critical only in {1; 3}. The resulting power index profile is (0.6, 0.2, 0.2).

4. If W_1 ≥ q > W_2 + W_3, then we have a fourth winning coalition (besides those mentioned in the previous case), namely {1}. Therefore, only player 1 is critical in all of the four winning coalitions, and the resulting power profile, thus, is (1, 0, 0).

5. If W_2 + W_3 ≥ q > W_1, then the fourth winning coalition (besides those mentioned in case 3) is {2; 3}. Now each of the three players is two times critical, respectively. This results in a power profile (0.33, 0.33, 0.33).

19A similar claim has been made in Berg and Holler (1986, 424), but then without proof. To keep the results readable, I will write voting weights as fractions, and power indexes as decimal figures (defining 1/3=0.33 and 1/6=0.17).
4 Application to the VW vs. Porsche case

In the VW-Porsche-case, the biggest player is always formed by the shareholders’ representatives. Denote this group as S; its voting weight is $W_S = 1/2$. Even though this figure has not been contested by the VW works council, the subsequent analysis also allows for different values of W_S. The other two groups are the representatives of the VW employees (denoted as V) and of Porsche employees (P). Since the VW workers demand more voting rights than P, but not more than S, we can limit our view to voting weight configurations with $1 \geq W_S \geq W_V \geq W_P \geq 0$.

The result derived in the previous section implies that no weighting vote configuration exists under which the Banzhaf power ratio equals the ratio of the workers represented by players V and P. If both P and V enjoy power, then the power ratio β_P/β_V equals one. A deviation from one is only possible if P is deprived of his power.

The voting weights of all players add up to one: $W_S + W_V + W_P = 1$. Hence, the analysis can be limited to discussing only the voting weights of players S and V, as the voting weight of P is implicitly given by $W_P = 1 - (W_S + W_V)$. Substituting the right hand side of this equation into the assumption $W_V \geq W_P$ yields $W_V \geq 1 - W_S - W_V$, which is equivalent to

$$W_S \geq 1 - 2W_V. \tag{1}$$

The bold triangle in Figure 1 shows all the possible combinations of W_S and W_V. First of all, these combinations have to be on or above the main diagonal (through the origin), as $W_S \geq W_V$. Second, they have to be on and below the flat diagonal line that connects $W_S = 1$ and $W_V = 1$, as no player can have more than all votes. Third, they have to be on and above the steeper diagonal line, represented by the equation $W_S = 1 - 2W_V$, due to inequality (1). Finally, all voting weights are non-negative: $W_S \geq 0$ and $W_V \geq 0$. These five constraints are symbolized in Figure 1 by tiny arrows.

The horizontal dashed line in Figure 1 represents the quota $q = 1/2$. Strictly above this line, and within the bold triangle, we have $W_S > 0.5$ and, thus, the resulting Banzhaf power index profile is $(1, 0, 0)$. This relates to case 4 of Proposition 1.

\footnote{The bold triangle is equivalent to the subset ABC in the ordered simplex presented by Berg and Holler (1986, 425).}
On the horizontal line, but only for $W_V < \frac{1}{2}$, the resulting power profile is $(0.6, 0.2, 0.2)$, see case 3 of Proposition 1. This case also includes the initial situation with $W_P = \frac{1}{2}$ and $W_V = \frac{1}{4}$, implying $W_S = \frac{1}{4}$, that is contested in court by the VW workers.

Now consider the voting weight combination $V_S = V_W = \frac{1}{2}$, represented by the bold dot in the right corner of the large triangle. It implies $W_P = 0$, hence the parties are in case 2 of Proposition 1. Thus, the power profile is $(0.5, 0.5, 0)$. Below the horizontal dashed line, in the bold triangle, the power profile is $(0.33, 0.33, 0.33)$, as derived in case 5 of Proposition 1.

Result 1: Under absolute majority, players P and V have either identical power, or P is powerless.

5 Proposed modifications

Two modifications of the current co-determination agreement for Porsche SE have been discussed, as explained in the Introduction: Important decisions may require a majority of (more than) $\frac{2}{3}$, and the VW workers’ representatives may receive a veto right. These modifications are discussed in sections 5.1 and 5.2. Section 5.3 adds the idea of a tie-breaking vote for the chairman of the supervisory board, who is elected by the shareholders’ side.

5.1 $2/3$ majority

Figure 2 demonstrates the analysis of $q = \frac{2}{3}$. The bold triangle contains all possible combinations of voting weights W_S and W_V, just as in Figure 1. The current situation is symbolized by the point $W_S = \frac{1}{2}$ and $W_V = \frac{1}{4}$, which implies $W_P = 1/4$.

In the area above $W_S = \frac{2}{3}$, the prevailing power profile is $(1, 0, 0)$. For $\frac{1}{3} < W_S \leq \frac{2}{3}$, different cases may occur: If $W_V \leq \frac{1}{3}$ (which implies that $W_S + W_P \geq \frac{2}{3}$) then player S can create a winning coalition with just one of the two other players (who are unable to form a winning coalition, because $W_S > \frac{1}{3}$ implies that $W_V + W_P < \frac{2}{3}$). According to Proposition 1, the power profile then is $(0.6, 0.2, 0.2)$; this case also contains the current situation. If, on the other hand, $W_V > \frac{1}{3}$, then player P is powerless even if he holds a positive voting weight as he is unable to form a winning coalition.
with S or V alone. The resulting power profile in the area to the right of the vertical dashed line (within the bold triangle) is, thus, $(0.5, 0.5, 0)$.

For the VW-Porsche-case, only the horizontal line at the level $W_S = 1/2$ is relevant. With identical voting weights, players V and P would enjoy an identical power of 0.2. With $W_V > 1/3$, implying $W_P < 1/6$, V’s power amounts to 0.5 whereas P’s power shrinks to zero. With regard to the Banzhaf power index, there is no difference between the absolute majority rule and $q = 2/3$, in particular if player S maintains 50 percent of the votes.

Result 2: Under $q = 2/3$, players P and V have either identical power, or P is powerless.

5.2 Veto right for player V

A veto right for player V means that he can block a majority decision for “yes.” If V exercises this right, the collective decision would be “no” even if both S and P vote for “yes” and $W_S + W_P > q$. Hence, there is no winning coalition that excludes V and, moreover, V is always critical.

With the absolute majority rule ($q = 1/2$), only two winning coalitions exist: \{S; V; P\} and \{S; V\}. Both S and V are critical in both coalitions, while P is never critical. Thus, the resulting Banzhaf power-index profile is $(0.5, 0.5, 0)$.

Result 3: Introducing a veto right for V would have the same effect as reassigning all voting rights from P to V.

5.3 Tie-breaking vote

Corporate laws usually assign a tie-breaking vote to the chairperson of the supervisory board, who usually is determined by the shareholder side.21 With $W_S = 1/2$ and absolute majority rule, the tie-breaking vote can only kick in if player S takes one position while P and V take the other. In that case, \{S\} is a winning coalition due to its tie-breaking vote, which implies that neither V nor P are critical. The resulting power profile thus is $(1, 0, 0)$.

If both a veto right for V and a tie-breaking vote for S exists, situations may occur in which these two rules conflict with each other. Then, a consti-

21E.g., A§§96-107 Aktiengesetz or §§27-29 Mitbestimmungsgesetz demand that the chairperson be elected among the members of the supervisory board and, if an election fails, the shareholders alone vote in the second round. Moreover, in case of a tie the chairperson has an additional vote if the supervisory board votes again on the same topic. The statutes of Porsche SE (as of January 30, 2009) are more precise with regard to this: According to §§10-11 the chairperson has to be elected from among the shareholders’ representatives, whose vote is decisive in case of a tie.
tutional provision is required that regulates which rule overrides the other. If the tie-breaking vote overrides the veto, we are in the same power situation as described above: \(\{S\} \) is a winning coalition, and the power profile is \((1, 0, 0, 0)\).

If, however, \(V \)'s veto right overrides the tie-breaking vote of \(S \), then \(\{S\} \) is not a winning coalition. The players are in the same situation as the one described in section 4.2, and the resulting power profile is \((0, 0.5, 0.5, 0)\).

Result 4: If the shareholders' side holds a tie-breaking vote, it enjoys all the power, unless it can be overridden by a veto of \(V \).

6 A “maverick” among the shareholders

Another modification of the basic analysis is presented in this section: Until now, it was assumed that the shareholders form a homogeneous player, i.e., always vote identically. This assumption will be relaxed here, where the “maverick” shareholder is introduced. A maverick is a shareholder who votes independently of his peers (not necessarily against them). This scenario requires the analysis of a 4-players game. This modification is a relevant part of the VW-Porsche-case as it may have an impact on the results derived so far. Section 6.2 looks at the impact of the existence of a maverick if the shareholders no not have a tie-breaking vote. Section 6.3 completes the analysis by distinguishing the two possible cases with regard to a tie-breaking vote: The chairperson can either be the maverick, or one of the other shareholders.

6.1 Definition

A maverick among the shareholders may sometimes vote with, sometimes against the other shareholders.\(^\text{22}\) A famous example for such a maverick is the chairman of the supervisory board of Volkswagen AG, Ferdinand Piëch, who lately cast *in absentia* a sealed vote which led to a victory for the employees.\(^\text{23}\)

Formally, the set of shareholders \(S \) is divided into two subsets: the maverick \(\{M\} \) on the one hand, and the other shareholders, who vote homoge-

\(^{22}\)This is less strict than the definition of “quarrelng members” which always disagree, see Felsenthal and Machover (1998, 237).

\(^{23}\)See Spiegel online (2008). Piëch is also a member of the supervisory board of Porsche AG and Porsche SE. After the attempted take-over of VW was canceled the owner-families considered selling a substantial share of Porsche SE to an investor from Qatar, whose representative in the supervisory board could also be seen as an independent player on the shareholders’ side.
neously, on the other hand. Denote the latter block as A, with $S = A \cup \{M\}$ and $M \notin A$. If a maverick would choose to always vote in accordance with one group on the employees’ side, say, V, then this situation could be analyzed as a 3-player game using the results derived in section 2. If, however, the maverick prefers to vote completely independent of the three other players, then the game consists of four instead of three players. The power profiles in a four player game cannot be derived from the general analysis in section 3.

In what follows we concentrate on the scenario of the VW-Porsche case and, therefore, assume that the total number of votes is $R = 12$. Hence, the absolute majority rule is written as $Q = 7$, the $2/3$-rule as $Q = 8$, $3/4$ as $Q = 9$, and unanimity as $Q = 12$.

In all scenarios, the shareholders and the employees control 6 votes each. 5 of the shareholders’ votes are in the hands of the group A, and one vote belongs to the maverick M. In the initial situation, V and P have 3 votes each. The aim is to evaluate whether (and to which extent) employee representative V would now benefit if voting rights are shifted from P to V for different values of the absolute quota Q.

6.2 Maverick, but no tie-breaking vote

Table 1 shows the Banzhaf power index values of players V and P for different settings of the parameters W_V, W_P, and Q. It is obvious that, in most cases, either $\beta_V = \beta_P$ or $\beta_P = 0$ holds, just as in the case without maverick.

\[
\begin{align*}
\text{TABLE 1 about here.} \\
\end{align*}
\]

There are only two exceptions:

- $Q = 7$ and V holds 5 votes $\Rightarrow \beta_P/\beta_V = 1/2$;
- $Q = 8$ and V holds 4 votes $\Rightarrow \beta_P/\beta_V = 1/3$.

In the first of these two exceptions, a coalition prevails if it controls at least seven votes; moreover, V has 5 votes and P just one vote. In this scenario, six winning coalitions exist: $\{V; M; P\}$ and $\{A; M; P\}$ with 7 votes; $\{A; V\}$ with 10 votes; $\{A; M; V\}$ and $\{A; V; P\}$ with 11 votes; and finally $\{A; M; V; P\}$ (12 votes). Players A and V are 4 times critical each, players M and P are critical in two coalitions, respectively. This implies $\beta_P = 1/6$ and $\beta_V = 1/3$.

In the second scenario, a coalition prevails if it controls at least eight votes. Thus, five winning coalitions exist: $\{A; M; P\}$ (8 votes), $\{A; V\}$ (9 votes), $\{A; M; V\}$ (10 votes), $\{A; V; P\}$ (11 votes), and $\{A; M; V; P\}$ (12 votes).
Player A is critical in all coalitions, M is critical only once, V is critical three times, and P just once. Thus, \(\beta_P = 0.1 \) and \(\beta_V = 0.3 \).

Result 5: If one shareholder is a maverick, it is possible to endow V with more power than P without making the latter powerless. However, a power ratio of 1/27 cannot be reached.

6.3 Maverick and tie-breaking vote

This section analyzes the power situation in a supervisory board if a maverick on the shareholders’ side exists, and the chairperson has a tie-breaking vote. This scenario is the one that most closely reflects the actual statutes of the Porsche SE and, hence, appears to be the most realistic one for the analysis of the VW-Porsche case. We now have to distinguish two scenarios: The chairperson can either be the maverick, or one of the other shareholders.

Table 2 shows the power of the four players in the different constellations under scrutiny. If the chairperson is member of group A, this player is critical all winning coalitions, except for \(\{A; M; V; P\} \) and \(\{M; V; P\} \). The other three players are critical two times, respectively. If V has up to 5 votes, this leads a Banzhaf power profile of \((0.5, 0.17, 0.17, 0.17) \); if V controls all the 6 votes on the employees’ side, the profile is \((0.33, 0.33, 0.33, 0) \).

If the maverick shareholder assumes the role of the chairman and, therefore, has the tie-breaking vote, he can make use of this in just two cases: if he agrees with A while the employees are in opposition, or if V has 5 votes and agrees with M (opposed by A and P). This is the reason for two observations:

Result 6: If M is the chairperson, then V’s power increases to 0.33 already if he switches from 4 to 5 votes (if A controls the tie-breaking vote, V needs 6 votes for that).

Result 7: In terms of Banzhaf power, M benefits from having the tie-breaking vote (compared to a situation in which one of A is chairperson) if, and only if, V has 5 votes.

With regard to the lawsuit of the VW works council, tabel 2 only reveals that the power ratio between P and V never reaches the desired level of 1/27.

Result 8: If the shareholders’ side is characterized by a maverick and a tie-breaking vote, then the employees’ representatives V and P either have identical power, or P is powerless.

7 Random quota

7.1 The concept

Holler (1982) has introduced the notion of a random decision rule.24 With fixed voting weights, a decision rule is fully characterized by the quota. Usually, one single quota is fixed ex ante in the statutes of the voting body. Each quota then implements a power profile, in other words: endows each player with one Banzhaf index. Another quota may lead to the same Banzhaf power for a specific player, or it may grant this player another amount of power.

With a finite set of decision rules, the number of possible power profiles is also finite (as it was shown in Section 2, see Proposition 1). Other power allocations can be reached by randomization between decision rules. For example, if a player enjoys a Banzhaf index of 0.2 under one decision rule, and 0.8 under another quota, then any expected Banzhaf power between 0.2 and 0.8 can be assigned to this player if the statutes of the voting body require to apply the two quotas at random. If the statutes demand that the one quote be applied with probability \(d\) and the other with \(1 - d\), then the expected power of this player would amount to

\[
0.2d + 0.8(1 - d) = 0.8 - 0.6d.
\]

Any desired expected power in the interval \([0.2, 0.8]\) can thus be reached by choosing \(d\) appropriately. E.g., let the desired expected power be 0.44:

\[
0.8 - 0.6d = 0.44 \iff d = 0.36/0.6 = 0.6.
\]

If the rule that grants the player under scrutiny a power of 0.2 is used with probability \(d = 0.6\) and the other with \(1 - d = 0.4\), then the expected power of this player is a linear combination of 0.2 and 0.8, in this case 0.44.

7.2 Random quota without maverick

To apply this idea to the Porsche-VW case, table 3 displays the power of players V and P under several quotas for three different composition of seats in the Porsche SE supervisory board (in the three players game, without a Maverick, and without a tie-breaking vote of the chairperson).

\[
\begin{array}{c}
\text{TABLE 3 about here.}
\end{array}
\]

24See also Holler (1985), Berg and Holler (1986).
The first entry in each cell denotes V’s Banzhaf index, the second entry refers to player P. In the initial situation (V and P hold 3 seats each), a randomization between the decision rules \(Q \in \{7; 8; 9\} \) and \(Q = 12 \) would allow to assign an expected power between 0.2 and 0.33 to both players. In each case the power ratio is one, which fails to lead to the power ratio of 1/27 desired by the VW works council.

This is different if the VW employee representatives hold four or five seats, and if the statutes require a randomization between, e.g., absolute majority and \(Q = 8 \). In this scenario, a power ratio \(\beta_p/\beta_v \) equal to 1/27 can be implemented, as the next proposition claims.

Proposition 2: In the three-player game between S, V, and P without a tie-breaking vote, the expected power ratio between V and P is 1/27 if V holds 4 seats while

- \(Q = 9 \) is used with probability 0.912, and \(Q = 7 \) (or \(Q = 8 \)) with 0.088;
- \(Q = 9 \) is used with probability 0.945, and \(Q = 12 \) with 0.055.

The same ratio is reached if V holds 5 seats while

- \(Q = 7 \) (or \(Q = 8 \)) is used with probability 0.912, and \(Q = 7 \) with 0.088;
- \(Q = 7 \) (or \(Q = 8 \)) is used with probability 0.945, and \(Q = 12 \) with 0.055;

If V holds 3 or 6 seats, the power ratio of 1/27 cannot be implemented.

Proof: In the four scenarios, the initial power combinations are either (0.5,0.2) and (0.2,0.2), or (0.5,0.0) and (0.33,0.33). In the first case, when using a decision rule with probability \(d \) that leads to (0.5,0), and one that leads to (0.2,0.2) with \(1 - d \), then V’s expected power is given by \(d/2 + (1 - d)/5 = (3d + 2)/10 \), while P’s expected power amounts to \((1 - d)/5 \). The former is 27 times the latter if \((3d + 2)/2 = 27(1 - d) \iff 3d + 2 = 54 - 54d \iff d = 52/57 = 0.912 \).

In the other case, when using a decision rule with probability \(d \) that leads to (0.5,0), and one that leads to (0.33,0.33) with \(1 - d \), then V’s expected power is given by \(d/2 + (1 - d)/3 = (d + 2)/6 \), while P’s expected power amounts to \((1 - d)/3 \). The former is 27 times the latter if \((d + 2)/2 = 27(1 - d) \iff d + 2 = 54 - 54d \iff d = 52/55 = 0.945 \).

This result could only be used in the case under scrutiny if the tie-breaking vote would be erased from the Porsche SE statutes, which assigned it to the chairperson of the supervisory board.\(^{25} \) With the TBV in the hands of a

\(^{25}\)See §11(5) of the statutes of Porsche SE (as of January 30, 2009). §10(1) of the statutes demand that the chairperson has to be elected from among the shareholders’ representatives.
shareholder, the power of the smaller players V and P is zero, unless V has a dominating veto right, see Section 4.3. The TBV only kicks in under the absolute majority rule (with higher quotas, it will never become effective). Hence, if the TBV is considered indispensable, then randomization will only lead to the desired power ratio of 1/27 if the usage of the absolute majority rule is circumvented. Then, the following cases remain applicable:

i) \(R_V = 4, Q = 9 \) is used with probability 0.912, and \(Q = 8 \) with 0.088;

ii) \(R_V = 4, Q = 9 \) is used with probability 0.945, and \(Q = 12 \) with 0.055;

iii) \(R_V = 5, Q = 8 \) (or \(Q = 9 \)) is used with probability 0.945, and \(Q = 12 \) with 0.055.

7.3 With maverick and tie-breaking vote

The last application of the random quota idea refers to the analysis of the VW-Porsche case under the assumption that one of the shareholders acts as a maverick, i.e., votes independently of his peers. Hence, the game is played among four players, namely V and P (who together control six votes), A (with 5 votes), and M (holding one vote). Table 2 in section 6.3 demonstrates that, if V holds 5 votes, then the Banzhaf power of players V and P under the absolute majority rule may depend on the identity of the maverick: if M is chairperson, then \(\beta_V = 1/3 \) and \(\beta_P = 0 \); if the chairperson one of the members of A, then \(\beta_V = \beta_P = 1/6 \). If V holds 3, 4, or 6 votes, then it plays no role which shareholder is the chairperson.

The statutes should implement a certain power ratio between two players regardless of the actual personal composition of the supervisory board, i.e., regardless of the identity of the chairperson. Hence, the analysis in this section excludes the scenarios with \(R_V = 5 \). Moreover, the scenarios with \(R_V = 3 \) and \(R_V = 6 \) can also be excluded: In the first case, V and P always have identical power, in the latter case, P is always powerless.

Table 4 repeats results derived in the previous sections\(^\text{26}\). The two columns labeled \(Q = 7A \) and \(Q = 7M \) refer to the existence of a maverick if one of the other shareholders is chairperson \((Q = 7A) \), or when it is the maverick who controls the tie-breaking vote \((Q = 7M) \). The following columns report the results if a maverick exists, but the tie-breaking vote plays no role as the quota \((Q = 8 \) or higher) excludes its application.

```
TABLE 4 about here.
```

\(^{26}\)The derivation of all these results can be found in the Appendix 2.
In the case that is closest to the Porsche SE statutes (chairperson has tie-breaking vote, maverick may exist), a random quota cannot implement a power ratio (between P and V of 1/27 if V holds 4 or 6 seats. If V is assigned 5 seats, then the power ratio between P and V depends on the identity of the chairperson (thus, the application of the absolute majority rule should be excluded). Proposition 3 presents the remaining scenarios in which the application of a random quota implements an expected power ratio of 1/27.

Proposition 3: Consider a four-player game between A, M, V, and P, in which A controls 5 votes, M holds one vote, while V and P share the remaining six votes. The expected power ratio between P and V equals 1/27 and is independent of whether or not M is the chairperson of the supervisory board if V holds 4 votes and

- a) $Q = 9$ is applied with probability 0.897, and $Q = 7$ with 0.103;
- b) $Q = 9$ is applied with 0.929, and $Q = 12$ with 0.071;
- c) $Q = 9$ is applied with 0.828, and $Q = 8$ with 0.172;

Moreover, the same ratio is implemented if V has 5 votes while $Q = 8$ (or $Q = 9$) is used with probability 0.929, and $Q = 12$ with 0.071, which is denoted as scenario d).

Proof: In all 4 scenarios, the higher probability refers to a power index combination $(\beta_V, \beta_P) = (0.5, 0)$. In a), this is mixed with $(0.17, 0.17)$, and V’s expected power amounts to $d/2 + (1 - d)/6 = (2d + 1)/6$. P’s expected power is $(1 - d)/6$. The former is 27 times the latter if $2d + 1 = 27 - 27d \iff d = 26/29 = 0.89655$...

In b) as well in the single scenario with $R_V = 5$, $(0.5, 0)$ this is mixed with $(0.25, 0.25)$. V’s expected power amounts to $d/2 + (1 - d)/4 = (d + 1)/4$. P’s expected power is $(1 - d)/4$. The former is 27 times the latter if $d + 1 = 27 - 27d \iff d = 13/14 = 0.92857$...

In c), $(0.5, 0)$ this is mixed with $(0.3, 0.1)$. Thus, V’s expected power amounts to $d/2 + 3(1 - d)/10 = (2d + 3)/10$. P’s expected power is $(1 - d)/10$. The former is 27 times the latter if $2d + 3 = 27 - 27d \iff d = 24/29 = 0.827586$...

7.4 Generalized result

Table 5 reports the combinations of the parameters R_V, R_P and Q which, with and without a maverick, allow for the application of a random decision rule such that the ratio of expected power indexes between P and V is 1/27 (zero probabilities are omitted).
In the final step of the analysis, random decision rules are identified which implement the desired ratio without having to know ex ante whether a maverick exists and, if this is the case, whether the chairperson (with tie-breaking vote) is the maverick or one of the other shareholders. Closer inspection of Table 5 reveals that the combination provides the closest approximation to a power ratio close to 1/27: V receives four or five seats, \(Q = 9 \) is used with some probability \(d \in [0.929, 0.945] \), and unanimity with \(1 - d \). The same result holds if V receives 5 seats and \(Q = 8 \) is with \(d \). The overall result of the analysis can, thus, be stated as follows:

Result 9: From an ex-ante point of view, unaware of the existence of a maverick and of the identity of the chairperson, the statutes should assign 4 seats to V (and 2 seats to P) and require using the 3/4-majority rule quite often (in about 19 out of 20 cases) while in the remaining cases unanimity should be applied.

8 Conclusions

Shifting votes from P to V would in general not lead to a more adequate influence for the VW workforce in the Porsche SE supervisory board. If no maverick exists (3-persons game), then either V and P have identical Banzhaf power, or P is made powerless. Using a 2/3 majority does not change this result (with and without a maverick). Introducing a veto right for V would make P powerless.

It is not within the discretion of a labor court to implement the existence of a maverick on the shareholders side. The court can modify the statutes (or prohibit the usage of certain provisions), but it cannot oblige one shareholder to vote independently from his peers. The court should as well hesitate to shift votes towards V just on the grounds that a maverick exists on the shareholder’s side, because a constitutional decision should be valid for all possible preference profiles and not just a special case.

Using a randomized decision rule would give a court (or a general assembly when setting up the statutes) the chance to implement almost any power ratio (within some limits). If a ratio of 1/27 to one is desired, based on the idea of equal influence per represented worker, taking into account the current figures, and the quantitative analysis of influence is based on the Banzhaf power index concept, then this would be a solution.
A randomized decision rule may seem far fetched from a lawyer’s point of view. Its implementation does, however, not require the voting body to toss a coin to determine the current decision rule before a vote is called for. The Banzhaf power index analyses power from an a priori point of view, i.e., it is limited to the analysis of power granted by the statutes of the organization.\(^{27}\) It is sufficient that the players anticipate the 2/3-rule will be used almost every time, while the absolute majority (case 3) or the unanimity rule (case 4) is used in just a few instances, and no one can fully anticipate which rule will be used in which instance.

The VW works council’s claim for additional seats in the Porsche SE supervisory board was, thus unfounded, as far as it was limited to the additional seats and driven by the desire for equal representation or influence.\(^{28}\) Without the accompanying measures, additional seats alone would not change the power ratio between P and V (unless P is reduced to zero).

Quantitative power analysis, however, would sustain V’s claim if the supervisory board obeys a randomized decision rule that puts a high probability on the 2/3-majority. In light of this analysis, Porsche’s proposal to use this decision rule more often could make sense, but only in combination with 5 seats for the VW workers’ representatives, and in the context of a randomized decision rule. The also discussed veto right for V, however, should not apply to V alone: If the unanimity rule is used occasionally as a part of a randomized decision rule (see case 4), this would not only endow V with an occasional veto right, but also P and S.

References

Amann, M. 2008 Porsche, VW und die Juristen. *Frankfurter Allgemeine Zeitung* No. 223 (September 23rd) 22.

\(^{27}\)Felsenthal and Machover (2004) call this I-power, which denotes a player’s influence over the outcome of a voting game (in front of a veil of ignorance, when players are still uncertain about their later preferences).

The contrasting concept is P-power, which represents a player’s expected share of a fixed pie gained by a winning coalition in a voting game. An example of the latter concept would be the Shapley-Shubik-index.

\(^{28}\)The VW works council may have had other motives, e.g., a desire to capture the position of the vice-chairperson in the Porsche SE supervisory board.

Table 1: Power of V and P if one shareholder is a maverick.

<table>
<thead>
<tr>
<th>Votes</th>
<th>$Q = 7$</th>
<th>$Q = 8$</th>
<th>$Q = 9$</th>
<th>$Q = 12$</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_V</td>
<td>R_P</td>
<td>β_V</td>
<td>β_P</td>
<td>β_V</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0.25</td>
<td>0.25</td>
<td>0.2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>0.25</td>
<td>0.25</td>
<td>0.3</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0.33</td>
<td>0.17</td>
<td>0.5</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0.6</td>
<td>0.0</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Table 2: Power of V and P with maverick, tie breaking vote, $Q = 7$

<table>
<thead>
<tr>
<th>Votes</th>
<th>Chairperson among A</th>
<th>M is chairperson</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_V</td>
<td>R_P</td>
<td>β_A</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0.5</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>0.5</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0.33</td>
</tr>
</tbody>
</table>

Table 3: Power of V and P under different quotas, no maverick.

<table>
<thead>
<tr>
<th>Votes</th>
<th>Decision rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_V</td>
<td>R_P</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
</tr>
</tbody>
</table>
Table 4: Power of V and P with tie-breaking vote and maverick.

<table>
<thead>
<tr>
<th>Votes</th>
<th>$Q = 7A$</th>
<th>$Q = 7M$</th>
<th>$Q = 8$</th>
<th>$Q = 9$</th>
<th>$Q = 12$</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_V</td>
<td>β_V</td>
<td>β_P</td>
<td>β_V</td>
<td>β_P</td>
<td>β_V</td>
</tr>
<tr>
<td>3 3</td>
<td>0.17</td>
<td>0.17</td>
<td>0.2</td>
<td>0.2</td>
<td>0.25</td>
</tr>
<tr>
<td>4 2</td>
<td>0.17</td>
<td>0.17</td>
<td>0.3</td>
<td>0.1</td>
<td>0.5</td>
</tr>
<tr>
<td>5 1</td>
<td>0.17</td>
<td>0.17</td>
<td>0.5</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>6 0</td>
<td>0.33</td>
<td>0</td>
<td>0.5</td>
<td>0</td>
<td>0.33</td>
</tr>
</tbody>
</table>

Table 5: Power of V and P with tie-breaking vote and maverick.

<table>
<thead>
<tr>
<th>R_V</th>
<th>$Q = 7$</th>
<th>$Q = 8$</th>
<th>$Q = 9$</th>
<th>$Q = 12$</th>
</tr>
</thead>
<tbody>
<tr>
<td>i) 4</td>
<td>0.088</td>
<td>0.912</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ii) 4</td>
<td>0.945</td>
<td>0.055</td>
<td></td>
<td></td>
</tr>
<tr>
<td>iii) 5</td>
<td>0.945</td>
<td>0.055</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) 4</td>
<td>0.103</td>
<td>0.897</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b) 4</td>
<td>0.929</td>
<td>0.071</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c) 4</td>
<td>0.172</td>
<td>0.827</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d) 5</td>
<td>0.929</td>
<td>0.071</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 1: Power profiles under absolute majority

![Diagram with points and labels]

- $(1, 0, 0)$
- $(0.6, 0.2, 0.2)$ incl. $W_S = 1/2$, $W_V = 1/4$
- $(0.5, 0.5, 0)$
- $(0.33, 0.33, 0.33)$
Figure 2: Power profiles if quota $q = 2/3$